Analysis of the M/D/1-type queue based on an integer-valued first-order autoregressive process
نویسندگان
چکیده
In this paper, we propose a queueing model based on an integer-valued rst-order autoregressive(INAR(1)) process. We derive the queue length distribution and its asymptotic decay rate of the proposed model. Also, our numerical study shows that the new model can be considered as an alternative approach to the well-known MMPP=D=1 queue in terms of performance and amount of computational work. c © 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کاملInteger Valued AR(1) with Geometric Innovations
The classical integer valued first-order autoregressive (INA- R(1)) model has been defined on the basis of Poisson innovations. This model has Poisson marginal distribution and is suitable for modeling equidispersed count data. In this paper, we introduce an modification of the INAR(1) model with geometric innovations (INARG(1)) for model- ing overdispersed count data. We discuss some structu...
متن کاملOn the existence of Hilbert valued periodically correlated autoregressive processes
In this paper we provide sufficient condition for existence of a unique Hilbert valued ($mathbb{H}$-valued) periodically correlated solution to the first order autoregressive model $X_{n}=rho _{n}X_{n-1}+Z_{n}$, for $nin mathbb{Z}$, and formulate the existing solution and its autocovariance operator. Also we specially investigate equivalent condition for the coordinate process...
متن کاملPoisson limit of an inhomogeneous nearly critical INAR ( 1 ) model ∗
An inhomogeneous first–order integer–valued autoregressive (INAR(1)) process is investigated, where the autoregressive type coefficient slowly converges to one. It is shown that the process converges weakly to a Poisson or a compound Poisson distribution.
متن کاملA parametric study for the first-order signed integer-valued autoregressive process
In recent years, many attempts have been made to find accurate models for integer-valued times series. The SINAR (for Signed INteger-valued AutoRegressive) process is one of the most interesting. Indeed, the SINAR model allows negative values both for the series and its autocorrelation function. In this paper, we focus on the simplest SINAR(1) model under some parametric assumptions. Explicitly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oper. Res. Lett.
دوره 27 شماره
صفحات -
تاریخ انتشار 2000